

# Benefit of Promises and Discrete Advice



Klaus Ambos-Spies, Ulrike Brandt, Martin Ziegler (Univ. Heidelberg) (TU Darmstadt)



## Enrichment in Recursive Analysis: Computing with Discrete Advice

- 2-fold advice "x=0?" makes sign uniformly recursive.
- discontinuous floor function:

  | x | itself as advice is unbounded.
  - 2-fold advice: " $x \in \mathbb{Z}$ ?" suffices.
    - Alternative 2-fold advice: parity( $\lfloor x \rfloor$ )
- Given singular  $A \in \mathbb{R}^{d \times d}$ , nontriv. solve linear equation  $A \cdot \underline{x} = 0$ 
  - [Brattka&Z.04]: knowing rank(A)  $\in$  {0,1,...,d-1} suffices
    - for computing a basis of kernel(A)
- Given symmetric  $A \in \mathbb{R}^{d \times d}$ , compute eigenvector/eigenbasis
  - [Brattka&Z.04]: knowing
    - Card $(\sigma(A)) \in \{1, ..., d\}$  suffices

- optimal:
- 1-fold insufficient

n-fold advice.

optimal!

In particular, both problems are nonuniformly computable

optimal?

#### Computing with Advice Formalized

Multi- Function  $f:X \Rightarrow Y$  sensible also for  $X=\mathbb{N}$  or  $\{0,1\}^*$ 

fold advice: provide to each  $x \in X$  some  $k(x) \in \{1,...K\}$ Induces partition  $\Delta = \{k^{-1}[1], k^{-1}[2], ..., k^{-1}[K]\}$  of X.

Call f computable with advice  $\Delta$  if  $f|_D$  computable  $\forall D \in \Delta$  in polyn. time





#### Real Function Complexity with/-out 2-fold Advice

time hierarchy theorem (diagonalization), Hartmanis&Stearns'65 Let  $L \subseteq \mathbb{N}$  be decidable in exp. but not in polyn. time 2-fold advice  $(L, \mathbb{N} \setminus L)$  renders it polytime decidable.

$$h(x) := \exp(-4x^2/(1-4x^2))$$
 for  $|x| \le 1/2$ ,  $h(x) := 0$  for  $|x| \ge 1/2$ 



#### Generalized Decision Problems

"Given a Boolean formula with ≤1 sat. assignment does it admit a satisfying assignment?"

→not a language (=desi®i©P+complete)

Decision problem:  $L \subseteq \mathbb{N}$  or  $L \subseteq \{0,1\}^*$ 

 $\rightarrow$  "Given  $x \in \mathbb{N}$ , does it hold  $x \in L$  or  $x \notin L$ ?"

Oded Goldreich Promise problem: (A,B) with  $A \cap B = \emptyset$  LNCS 3895

 $\rightarrow$  "Given  $x \in A \cup B$ ) does it hold  $x \in A$  or  $x \in B$ ?"

**Def:** Classification problem is a tuple  $C=(C_1,...,C_d)$ . An algorithm solves C if, on input  $x \in \bigcup C_r$  it outputs  $j \in \{1,...,d\}$  with  $x \in C_j$ . not neces, disjoint—multival

algorithm may behave arbitrarily on inputs  $x \notin A \cup B$ 

#### Main Result: Discrete

Fix  $J \in \mathbb{N}$ . There is a classfication problem  $(C_1, \dots C_J)$ 

- algorithmical. solvable time a tower of height J-1 but not one of height J-2
- with 2-fold advice time a tower of height J-2 but not one of height J-3
- ...
   with (*J*-2)-fold advice in doubly expon. time
- with (J-1)-fold advice in exponential time but not in polyn. time
- with J-fold advice in polynomial time (triv.ly)

#### Main Result: Smooth

Fix  $J \in \mathbb{N}$ . There exists as f is the first inequality of f is f in f in

- abyopithabbeal. solvable time a tower of height J-1 but not one of height J-2
- with 2-fold advice time a tower of height J-2 but not one of height J-3
- ...  $f(x) := \sum_{j=1...J} j \cdot \sum_{m \in C_j} h(m \cdot x 1) / m^{\log m}$  with (J-2)-fold advice in doubly expon. time
- with (J-2)-fold advice in doubly expon. time but not in expon. time
- with (J-1)-fold advice in exponential time but not in polyn. time
- with J-fold advice in polynomial time

#### Proof (Sketch)

**Lemma:** a) To  $d,J \in \mathbb{N}$  there exists a total classification problem  $C^{d,J} = (C_1, \dots C_d)$  solvable in time a tower of height J but not a tower of height J-1, even with (d-1)-fold advice.

b) Fix classification problems  $C=(C_1,...,C_d)$ ,  $\mathcal{B}=(B_1,...,B_d)$ . Complexity of  $\mathcal{B}\oplus C:=((0\circ B_1)\cup (1\circ C_1),...,(0\circ B_d)\cup (1\circ C_d))$ 

is the maximum of  $\mathcal{B}$  and  $\mathcal{C}$ .  $(\mathcal{A} \oplus \mathcal{B}) \oplus \mathcal{C} \equiv \mathcal{A} \oplus (\mathcal{B} \oplus \mathcal{C})$ 

Proof: a) diagonalization; b) immediate reduction.

Finally consider  $C^{2,J-1} \oplus C^{3,J-2} \oplus C^{4,J-3} \oplus ... \oplus C^{J-1,2} \oplus C^{J,1}$ :

solvable in time a tower of height *J*-1, but not of height *J*-2 with 2-fold advice a tower of height *J*-2, but not height *J*-3, with 3-fold advice a tower of height *J*-3, but not height *J*-4

#### A more natural example (?)

The functional max:C[-1;1] $\rightarrow \mathbb{R}$ ,  $f \rightarrow \max_{x} f$  Friedman &Ko 1982

- •can map polytime  $f \in C^{\infty}[-1;1]$  to  $\mathcal{N}P_1$ -hard  $\max(f)$
- •uniformly requires exponitime, even on 1-Lip[0;1]
- adversary argument, adapted from IBC (Traub...)
- •max is uniformly easy when restricted to  $\mathcal K$  or  $\mathcal L$
- •but not on  $\mathcal{K}\cup\mathcal{L}$ : 2-fold advice drops complexity

from exponent. to polynom.

$$\mathcal{K} := \{ f : f(x) = 0 \text{ for } x \ge 0, f(x) \le 0 \text{ for } x \le 0 \}$$

$$\mathcal{L} := \{ f : \max(f) = -f(-1) \}$$

$$\approx 2^{n-1} \text{ 'hats'}$$
Martin Ziegler 9

## Conclusion

- In practice, (real number inputs often exhibit some structure (e.g. band-3 matrix from FEM method)
- Without exploiting such information, or merely detecting it, (i.e. *general purpose*) algorithms are often inefficient;
- the problem may even be discontinuous/uncomputable.
- "Discrete advice" formalizes such additional information;
- its necessity for real computability is well-known in TTE.

"How much" discrete advice is necessary and sufficient to render a real number problem <u>computable</u>/continuous?

## Conclusion

- Today: Discrete advice and computational complexity
- •A real function, computable but of high complexity
- •which gradually drops with increasing discrete advice.
- Technique: encode discrete classification problem as natural generalization of standard promise problems.
- → Artificial problem (diagonalization); more natural:
- Maximization functional on certain subspace of C[0;1]
- uniformly computable in exponential time
- •drops to polytime with 2-fold advice.
- → artificial domain: How about really natural examples?
- "How much" discrete advice is necessary and sufficient to render a real number problem <u>computable</u>/continuous?